인프라/네트워크(기초) 2023. 4. 7. 15:45

https://umbum.dev/1221

 

Client IP 구하기 : X-Forwarded-For와 X-Real-IP

Proxy / VPN X-Real-IP는 바로 직전 client의 IP를 나타낸다. ``` proxy_set_header X-Real-IP $remote_addr; 설정에서 $remote_addr이, nginx가 수신한 client IP를 의미한다. User - Nginx - Tomcat 일 때, X-Real-IP는 User IP 가 된다. Us

umbum.dev

 

posted by 여성게
:
인프라/Docker&Kubernetes 2020. 8. 30. 17:02

오늘 다루어볼 내용은 kustomize이다. Kustomize는 kustomization 파일을 이용해 kubernetes 오브젝트를 사용자가 원하는 대로 변경(customize)하는 도구이다.

 

모든 예제는 아래 깃헙 kube-kustomize 디렉토리에 있다.

 

yoonyeoseong/kubernetes-sample

Kubernetes(쿠버네티스) sample. Contribute to yoonyeoseong/kubernetes-sample development by creating an account on GitHub.

github.com

 

kustomization 파일을 포함하는 디렉터리 내의 리소스를 보거나 실제 클러스터에 리소스를 적용하려면 다음 명령어를 이용한다.

 

#kustomize가 적용된 설정파일 결과를 보여준다. 
> kubectl kustomize <kustomization_directory> 
#실제 kustomize 리소스를 클러스터에 적용한다. 
> kubectl apply -k <kustomization_directory>

 

Kustomize

Kustomize는 쿠버네티스 구성을 사용자 정의화하는 도구이다. 이는 애플리케이션 구성 파일을 관리하기 위해 다음 기능들을 가진다.

  • 다른 소스에서 리소스 생성
  • 리소스에 대한 교차 편집 필드 설정
  • 리소스 집합을 구성하고 사용자 정의

 

교차 편집 필드 설정

프로젝트 내 모든 쿠버네티스 리소스에 교차 편집 필드를 설정하는 것은 꽤나 일반적이다. 교차 편집 필드를 설정하는 몇 가지 사용 사례는 다음과 같다.

  • 모든 리소스에 동일한 네임스페이스를 설정
  • 동일한 네임 접두사 또는 접미사를 추가
  • 동일한 레이블들을 추가
  • 동일한 어노테이션들을 추가

 

 

yoonyeoseong/kubernetes-sample

Kubernetes(쿠버네티스) sample. Contribute to yoonyeoseong/kubernetes-sample development by creating an account on GitHub.

github.com

# deployment.yaml을 생성
cat <<EOF >./deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: nginx-deployment
  labels:
    app: nginx
spec:
  selector:
    matchLabels:
      app: nginx
  template:
    metadata:
      labels:
        app: nginx
    spec:
      containers:
      - name: nginx
        image: nginx
EOF

cat <<EOF >./kustomization.yaml
namespace: my-namespace
namePrefix: dev-
nameSuffix: "-001"
commonLabels:
  app: bingo
commonAnnotations:
  oncallPager: 800-555-1212
resources:
- deployment.yaml
EOF
> kubectl kustomize ./kube-kustomize/kustomize-upsert-field

apiVersion: apps/v1
kind: Deployment
metadata:
  annotations:
    oncallPager: 800-555-1212
  labels:
    app: bingo
  name: dev-nginx-deployment-001
  namespace: my-namespace
spec:
  selector:
    matchLabels:
      app: bingo
  template:
    metadata:
      annotations:
        oncallPager: 800-555-1212
      labels:
        app: bingo
    spec:
      containers:
      - image: nginx
        name: nginx

 

구성(composition)

한 파일에 deployment, service 등을 정의하는 것은 일반적이다. kustomize는 서로 다른 리소스들을 하나의 파일로 구성할 수 있게 지원한다.

 

 

 

yoonyeoseong/kubernetes-sample

Kubernetes(쿠버네티스) sample. Contribute to yoonyeoseong/kubernetes-sample development by creating an account on GitHub.

github.com

 

# deployment.yaml 파일 생성
cat <<EOF > deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: my-nginx
spec:
  selector:
    matchLabels:
      run: my-nginx
  replicas: 2
  template:
    metadata:
      labels:
        run: my-nginx
    spec:
      containers:
      - name: my-nginx
        image: nginx
        ports:
        - containerPort: 80
EOF

# service.yaml 파일 생성
cat <<EOF > service.yaml
apiVersion: v1
kind: Service
metadata:
  name: my-nginx
  labels:
    run: my-nginx
spec:
  ports:
  - port: 80
    protocol: TCP
  selector:
    run: my-nginx
EOF

# 이들을 구성하는 kustomization.yaml 생성
cat <<EOF >./kustomization.yaml
resources:
- deployment.yaml
- service.yaml
EOF
> kubectl kustomize /kube-kustomize/kustomize-composition

apiVersion: v1
kind: Service
metadata:
  labels:
    run: my-nginx
  name: my-nginx
spec:
  ports:
    - port: 80
      protocol: TCP
  selector:
    run: my-nginx
---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: my-nginx
spec:
  replicas: 2
  selector:
    matchLabels:
      run: my-nginx
  template:
    metadata:
      labels:
        run: my-nginx
    spec:
      containers:
        - image: nginx
          name: my-nginx
          ports:
            - containerPort: 80

 

 

사용자 정의(user patch define)

패치는 리소스에 다른 사용자 정의를 적용하는 데 사용할 수 있다. Kustomize는 patchesStrategicMerge와 patchesJson6902를 통해 서로 다른 패치 메커니즘을 지원한다. patchesStrategicMerge는 파일 경로들의 리스트이다. 각각의 파일은 patchesStrategicMerge로 분석될 수 있어야 한다. 패치 내부의 네임은 반드시 이미 읽혀진 리소스 네임(ex. deployment.yaml 안의 이름)과 일치해야 한다. 한 가지 일을 하는 작은 패치가 권장된다. 예를 들기 위해 디플로이먼트 레플리카 숫자를 증가시키는 하나의 패치와 메모리 상한을 설정하는 다른 패치를 생성한다.

 

 

 

yoonyeoseong/kubernetes-sample

Kubernetes(쿠버네티스) sample. Contribute to yoonyeoseong/kubernetes-sample development by creating an account on GitHub.

github.com

 

 

yoonyeoseong/kubernetes-sample

Kubernetes(쿠버네티스) sample. Contribute to yoonyeoseong/kubernetes-sample development by creating an account on GitHub.

github.com

 

# deployment.yaml 파일 생성
cat <<EOF > deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: my-nginx
spec:
  selector:
    matchLabels:
      run: my-nginx
  replicas: 2
  template:
    metadata:
      labels:
        run: my-nginx
    spec:
      containers:
      - name: my-nginx
        image: nginx
        ports:
        - containerPort: 80
EOF

# increase_replicas.yaml 패치 생성
cat <<EOF > increase_replicas.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: my-nginx
spec:
  replicas: 3
EOF

# 다른 패치로 set_memory.yaml 생성
cat <<EOF > set_memory.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: my-nginx
spec:
  template:
    spec:
      containers:
      - name: my-nginx
        resources:
        limits:
          memory: 512Mi
EOF

cat <<EOF >./kustomization.yaml
resources:
- deployment.yaml
patchesStrategicMerge:
- increase_replicas.yaml
- set_memory.yaml
EOF
> kubectl kustomize /kube-kustomize/kustomize-patchesStrategicMerge

apiVersion: apps/v1
kind: Deployment
metadata:
  name: my-nginx
spec:
  replicas: 3
  selector:
    matchLabels:
      run: my-nginx
  template:
    metadata:
      labels:
        run: my-nginx
    spec:
      containers:
        - image: nginx
          name: my-nginx
          ports:
            - containerPort: 80
          resources:
            limits:
              memory: 512Mi

 

모든 리소스 또는 필드가 patchesStrategicMerge를 지원하는 것은 아니다. 임의의 리소스 내 임의의 필드의 수정을 지원하기 위해, Kustomize는 patchesJson6902를 통한 JSON 패치 적용을 제공한다. Json 패치의 정확한 리소스를 찾기 위해, 해당 리소스의 group, version, kind, name이 kustomization.yaml 내에 명시될 필요가 있다. 예를 들면, patchesJson6902를 통해 디플로이먼트의 리소스만 증가시킬 수 있다. 또한 patchesStrategicMerge, patchesJson6902를 같이 혼합해서 사용도 가능하다.

 

#deployment
apiVersion: apps/v1
kind: Deployment
metadata:
  name: my-nginx
spec:
  selector:
    matchLabels:
      run: my-nginx
  replicas: 2
  template:
    metadata:
      labels:
        run: my-nginx
    spec:
      containers:
        - name: my-nginx
          image: nginx
          ports:
            - containerPort: 80
          resources:
            limits:
              memory: 256Mi

#patch-replica.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: my-nginx
spec:
  replicas: 3

#patch-resource.yaml
- op: replace
  path: /spec/template/spec/containers/0/resources/limits/memory
  value: 512Mi

#kustomization.yaml
resources:
  - deployment.yaml

patchesStrategicMerge:
  - patch-replica.yaml

patchesJson6902:
  - target:
      kind: Deployment
      name: my-nginx
      group: apps
      version: v1
    path: patch-resource.yaml
> kubectl kustomize /kube-kustomize/kustomize-patchesJson6902

apiVersion: apps/v1
kind: Deployment
metadata:
  name: my-nginx
spec:
  replicas: 3
  selector:
    matchLabels:
      run: my-nginx
  template:
    metadata:
      labels:
        run: my-nginx
    spec:
      containers:
        - image: nginx
          name: my-nginx
          ports:
            - containerPort: 80
          resources:
            limits:
              memory: 512Mi

 

patchesJson6902는 "replace"라는 오퍼레이션 말고, add, remove, move, copy, test라는 오퍼레이션도 존재한다.

patch images

patch 파일을 생성하지 않고, 컨테이너의 이미지를 재정의 할 수 있다.

 

 

yoonyeoseong/kubernetes-sample

Kubernetes(쿠버네티스) sample. Contribute to yoonyeoseong/kubernetes-sample development by creating an account on GitHub.

github.com

 

cat <<EOF > deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: my-nginx
spec:
  selector:
    matchLabels:
      run: my-nginx
  replicas: 2
  template:
    metadata:
      labels:
        run: my-nginx
    spec:
      containers:
      - name: my-nginx
        image: nginx
        ports:
        - containerPort: 80
EOF

cat <<EOF >./kustomization.yaml
resources:
- deployment.yaml
images:
- name: nginx
  newName: my.image.registry/nginx
  newTag: 1.4.0
EOF
> kubectl kustomize /kube-kustomize/kustomize-patch-images

apiVersion: apps/v1
kind: Deployment
metadata:
  name: my-nginx
spec:
  replicas: 2
  selector:
    matchLabels:
      run: my-nginx
  template:
    metadata:
      labels:
        run: my-nginx
    spec:
      containers:
        - image: my.image.registry/nginx:1.4.0
          name: my-nginx
          ports:
            - containerPort: 80

 

Base&Overlay

Kustomize는 base와 overlay의 개념을 가지고 있다. base는 kustomization.yaml과 함께 사용되는 디렉터리다. 이는 사용자 정의와 관련된 리소스들의 집합을 포함한다. kustomization.yaml의 내부에 표시되는 base는 로컬 디렉터리이거나 원격 리포지터리의 디렉터리가 될 수 있다. overlay는 kustomization.yaml이 있는 디렉터리로 다른 kustomization 디렉터리들을 bases로 참조한다. base는 overlay에 대해서 알지 못하며 여러 overlay들에서 사용될 수 있다. 한 overlay는 다수의 base들을 가질 수 있고, base들에서 모든 리소스를 구성할 수 있으며, 이들의 위에 사용자 정의도 가질 수 있다.

 

 

 

yoonyeoseong/kubernetes-sample

Kubernetes(쿠버네티스) sample. Contribute to yoonyeoseong/kubernetes-sample development by creating an account on GitHub.

github.com

# base를 가지는 디렉터리 생성
mkdir base
# base/deployment.yaml 생성
cat <<EOF > base/deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: my-nginx
spec:
  selector:
    matchLabels:
      run: my-nginx
  replicas: 2
  template:
    metadata:
      labels:
        run: my-nginx
    spec:
      containers:
      - name: my-nginx
        image: nginx
EOF

# base/service.yaml 파일 생성
cat <<EOF > base/service.yaml
apiVersion: v1
kind: Service
metadata:
  name: my-nginx
  labels:
    run: my-nginx
spec:
  ports:
  - port: 80
    protocol: TCP
  selector:
    run: my-nginx
EOF
# base/kustomization.yaml 생성
cat <<EOF > base/kustomization.yaml
resources:
- deployment.yaml
- service.yaml
EOF

 

이 base는 다수의 overlay에서 사용될 수 있다. 다른 namePrefix 또는 다른 교차 편집 필드들을 서로 다른 overlay에 추가할 수 있다. 다음 예제는 동일한 base를 사용하는 두 overlay들이다.

 

> mkdir dev

cat <<EOF > dev/kustomization.yaml
#구버전 base 불러오는 방법
bases:
  - ../base
#resources:
#- ../base/kustomization.yaml

namespace: dev-my-nginx

patchesStrategicMerge:
  - patch-replica.yaml

patchesJson6902:
  - target:
      kind: Deployment
      name: my-nginx
      group: apps
      version: v1
    path: patch-resource.yaml

images:
  - name: nginx
    newName: my.image.registry/nginx
    newTag: 1.4.0
EOF

mkdir prod
cat <<EOF > prod/kustomization.yaml
#구버전 base 불러오는 방법
bases:
  - ../base
#resources:
#- ../base/kustomization.yaml

namespace: prod-my-nginx

patchesStrategicMerge:
  - patch-replica.yaml

patchesJson6902:
  - target:
      kind: Deployment
      name: my-nginx
      group: apps
      version: v1
    path: patch-resource.yaml

images:
  - name: nginx
    newName: my.image.registry/nginx
    newTag: 1.4.0
EOF

 

추가적으로 patch 파일들을 몇가지 작성하였다.

 

> cd dev
> kubectl kustomize ./

#dev
apiVersion: v1
kind: Service
metadata:
  labels:
    run: my-nginx
  name: my-nginx
  namespace: dev-my-nginx
spec:
  ports:
    - port: 80
      protocol: TCP
  selector:
    run: my-nginx
---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: my-nginx
  namespace: dev-my-nginx
spec:
  replicas: 1
  selector:
    matchLabels:
      run: my-nginx
  template:
    metadata:
      labels:
        run: my-nginx
    spec:
      containers:
        - image: my.image.registry/nginx:1.4.0
          name: my-nginx
          ports:
            - containerPort: 80
          resources:
            limits:
              memory: 512Mi

> cd ../prod
> kubectl kustomize ./

#prod
apiVersion: v1
kind: Service
metadata:
  labels:
    run: my-nginx
  name: my-nginx
  namespace: prod-my-nginx
spec:
  ports:
    - port: 80
      protocol: TCP
  selector:
    run: my-nginx
---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: my-nginx
  namespace: prod-my-nginx
spec:
  replicas: 3
  selector:
    matchLabels:
      run: my-nginx
  template:
    metadata:
      labels:
        run: my-nginx
    spec:
      containers:
        - image: my.image.registry/nginx:1.4.0
          name: my-nginx
          ports:
            - containerPort: 80
          resources:
            limits:
              memory: 1024Mi

 

여기까지 쿠버네티스 설정 파일들을 관리하기 위한 방법으로 kustomize에 대해 간단히 다루어보었다.

posted by 여성게
:
인프라/Docker&Kubernetes 2020. 8. 24. 22:35

이번 포스팅에서는 쿠버네티스 로깅 파이프라인 구성에 대해 다루어볼 것이다. 저번 포스팅에서는 Fluentd + ES + Kibana 조합으로 클러스터 로깅 시스템을 구성했었는데, 이번 시간에는 Fluentd + kafka + ELK 조합으로 구성해본다.

<fluentd + ES + kibana logging>

 

 

Kubernetes - Kubernetes 로깅 운영(logging), Fluentd

오늘 다루어볼 내용은 쿠버네티스 환경에서의 로깅운영 방법이다. 지금까지는 쿠버네티스에 어떻게 팟을 띄우는지에 대해 집중했다면 오늘 포스팅 내용은 운영단계의 내용이 될 것 같다. 사실

coding-start.tistory.com

중간에 카프카를 두는 이유는 여러가지가 있을 수 있을 것 같다. 첫번째 버퍼역할을 하기때문에 어느정도 파이프라인의 속도 조절이 가능하다. 두번째 로그를 카프카 큐에 담아두고, 여러 컨슈머 그룹이 각기의 목적으로 로그데이터를 사용가능하다. 바로 실습에 들어가보자.

 

구성

 

 

구성은 위 그림과 같다. fluentd는 컨테이너 로그를 tail하고 있고, tail한 데이터를 카프카로 프로듀싱한다. 그리고 아웃풋으로 로그스태시로 보내고 로그 스태시는 엘라스틱서치에 색인을하게 된다.

 

실습이전에 본 실습에서 진행하는 예제중 카프카 구성과 엘라스틱서치의 구성은 별도로 옵션 튜닝 및 물리머신에 구성하는 것이 좋다. 필자는 구성의 편의를 위해 아무런 옵션을 튜닝하지 않은채 같은 쿠버네티스 클러스터에 카프카와 엘라스틱서치를 구성하였다.

 

kafka install & deploy on kubernetes unsing helm
 

TheOpenCloudEngine/uEngine-cloud-k8s

Contribute to TheOpenCloudEngine/uEngine-cloud-k8s development by creating an account on GitHub.

github.com

<헬름 설치>

> curl https://raw.githubusercontent.com/kubernetes/helm/master/scripts/get | bash
> kubectl --namespace kube-system create sa tiller
> kubectl create clusterrolebinding tiller --clusterrole cluster-admin --serviceaccount=kube-system:tiller
> helm init --service-account tiller
> helm repo update

위 명령어로 헬름을 다운로드 받는다.

 

<카프카 헬름 차트 설치 및 배포>

> kubectl create ns kafka
> helm repo add incubator http://storage.googleapis.com/kubernetes-charts-incubator
> helm install --name my-kafka --namespace kafka incubator/kafka

 

kafka라는 별도의 네임스페이스를 생성하여 그 안에 카프카를 배포하였다.

 

<헬름차트 삭제>

차트 삭제가 필요하면 아래 명령어를 이용하자.

# --purge 옵션으로 관련된 모든 정보를 지운다. 
helm delete my-kafka --purge

 

<fluentd가 데이터를 보낼 토픽생성>

> kubectl -n kafka exec my-kafka-0 -- /usr/bin/kafka-topics \
--zookeeper my-kafka-zookeeper:2181 --topic fluentd-container-logging \
--create --partitions 3 --replication-factor 3

Created topic "fluentd-container-logging".

 

"fluentd-container-logging"이라는 이름으로 토픽을 생성하였다.

 

<생성된 topic 확인>

> kubectl -n kafka exec my-kafka-0 -- /usr/bin/kafka-topics --zookeeper my-kafka-zookeeper:2181 --list

fluentd-container-logging

 

토픽리스트를 조회해서 우리가 생성한 토픽이 있는지 조회해본다.

 

<fluentd가 보낸 데이터가 큐로 잘들어오는지 확인하기 위해 컨슘머 실행>

> kubectl -n kafka exec -ti my-kafka-0 -- /usr/bin/kafka-console-consumer \
--bootstrap-server my-kafka:9092 --topic fluentd-container-logging --from-beginning

 

이제 실제로 카프카와 주키퍼가 쿠버네티스에 잘 떠있는지 확인해보자 !

 

> kubectl get pod,svc -n kafka
  NAME                       READY   STATUS    RESTARTS   AGE
  pod/my-kafka-0             1/1     Running   2          4m14s
  pod/my-kafka-1             1/1     Running   0          116s
  pod/my-kafka-2             1/1     Running   0          78s
  pod/my-kafka-zookeeper-0   1/1     Running   0          4m14s
  pod/my-kafka-zookeeper-1   1/1     Running   0          3m32s
  pod/my-kafka-zookeeper-2   1/1     Running   0          3m
  NAME                                  TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)                      AGE
  service/my-kafka                      ClusterIP   10.108.104.66   <none>        9092/TCP                     4m14s
  service/my-kafka-headless             ClusterIP   None            <none>        9092/TCP                     4m14s
  service/my-kafka-zookeeper            ClusterIP   10.97.205.63    <none>        2181/TCP                     4m14s
  service/my-kafka-zookeeper-headless   ClusterIP   None            <none>        2181/TCP,3888/TCP,2888/TCP   4m14s

 

위와 같이 팟과 서비스 목록이 보인다면 다음으로 넘어간다.

 

ELK Stack 구성

<elasticsearch 실행>

아래 deployment와 service 설정파일을 이용하여 쿠버네티스 위에 엘라스틱서치를 구성한다.

 

apiVersion: v1
kind: Service
metadata:
  name: elasticsearch
  namespace: elk-stack
spec:
  selector:
    app: elasticsearch
  ports:
    - port: 9200
      protocol: TCP
      targetPort: 9200
---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: elasticsearch
  namespace: elk-stack
  labels:
    app: elasticsearch
spec:
  replicas: 1
  selector:
    matchLabels:
      app: elasticsearch
  template:
    metadata:
      labels:
        app: elasticsearch
    spec:
      containers:
      - name: elasticsearch
        image: elastic/elasticsearch:6.8.6
        ports:
        - containerPort: 9200
          name: http
        - containerPort: 9300
          name: tcp

 

위 설정 파일은 볼륨을 구성하지 않아서 일회성(테스트)로만 가능하다. 실제로 운영환경에서는 물리머신에 클러스터를 구성하던가, 혹은 쿠버네티스 볼륨을 붙여서 구성하자.

 

> kubectl apply -f ./kube-logging/fluentd-elasticsearch/elasticsearch.yaml
> kubectl get pod,svc -n elk-stack
  NAME                                 READY   STATUS    RESTARTS   AGE
  pod/elasticsearch-654c5b6b77-l8k2z   1/1     Running   0          50s
  NAME                    TYPE        CLUSTER-IP     EXTERNAL-IP   PORT(S)    AGE
  service/elasticsearch   ClusterIP   10.101.27.73   <none>        9200/TCP   50s

 

<kibana 실행>

키바나는 아래 설정파일을 예제로 구성하였다.

 

apiVersion: v1
kind: Service
metadata:
  name: kibana
  namespace: elk-stack
spec:
  selector:
    app: kibana
  ports:
  - protocol: TCP
    port: 5601
    targetPort: 5601
  type: NodePort
---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: kibana
  namespace: elk-stack
  labels:
    app: kibana
spec:
  replicas: 1
  selector:
    matchLabels:
      app: kibana
  template:
    metadata:
      labels:
        app: kibana
    spec:
      containers:
      - name: kibana
        image: elastic/kibana:6.8.6
        ports:
        - containerPort: 5601
          name: http

 

위 설정중 조금 살펴봐야할 것은 서비스 타입을 NodePort로 준 점이다. 실제로 외부로 포트를 개방해 localhost로 접근 가능하다. 실제 운영환경에서는 ingress까지 구성하여 배포하자.

 

> kubectl apply -f ./kube-logging/fluentd-elasticsearch/kibana.yaml
> kubectl get pod,svc -n elk-stack | grep kibana
  NAME                                 READY   STATUS    RESTARTS   AGE
  pod/kibana-6d474df8c6-fsfc7          1/1     Running   0          24s
  NAME                                 READY   STATUS    RESTARTS   AGE
  service/kibana          NodePort    10.97.240.55   <none>        5601:30578/TCP   24s

 

http://localhost:30578로 접근해 키바나가 잘 떠있는지와 엘라스틱서치와 잘 연동되었는지 확인하자.

 

<logstash 실행>

로그스태시는 아래 예시 설정 파일로 구성하였다.

 

apiVersion: v1
kind: ConfigMap
metadata:
  name: logstash-configmap
  namespace: elk-stack
data:
  logstash.yml: |
    http.host: "127.0.0.1"
    path.config: /usr/share/logstash/pipeline
    pipeline.workers: 2
  logstash.conf: |
    # all input will come from filebeat, no local logs
    input {
      kafka {
        bootstrap_servers => "my-kafka.kafka.svc.cluster.local:9092"
        topics => "fluentd-container-logging"
        group_id => "fluentd-consumer-group"
        enable_auto_commit => "true"
        auto_offset_reset => "latest"
        consumer_threads => 4
        codec => "json"
      }
    }

    output {
        elasticsearch {
          hosts => ["http://elasticsearch.elk-stack.svc.cluster.local:9200"]
          manage_template => false
          index => "kubernetes-container-log-%{+YYYY-MM-dd}"
        }
    }
---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: logstash-deployment
  namespace: elk-stack
spec:
  replicas: 1
  selector:
    matchLabels:
      app: logstash
  template:
    metadata:
      labels:
        app: logstash
    spec:
      containers:
        - name: logstash
          image: docker.elastic.co/logstash/logstash:5.6.0
          ports:
            - containerPort: 5044
          volumeMounts:
            - name: config-volume
              mountPath: /usr/share/logstash/config
            - name: logstash-pipeline-volume
              mountPath: /usr/share/logstash/pipeline
      volumes:
        - name: config-volume
          configMap:
            name: logstash-configmap
            items:
              - key: logstash.yml
                path: logstash.yml
        - name: logstash-pipeline-volume
          configMap:
            name: logstash-configmap
            items:
              - key: logstash.conf
                path: logstash.conf
---
apiVersion: v1
kind: Service
metadata:
  name: logstash-service
  namespace: elk-stack
spec:
  selector:
    app: logstash
  ports:
    - protocol: TCP
      port: 5044
      targetPort: 5044
  type: ClusterIP

 

설정에서 잘 살펴볼 것은 input과 output의 호스트 설정이다. 우리는 모든 모듈을 같은 클러스터에 설치할 것이기 때문에 쿠버네티스 내부 DNS를 사용하였다.(실습에 편의를 위한 것이기도 하지만, 실제 운영환경에서도 내부 시스템은 종종 클러스터 내부 DNS를 사용하기도 한다. 그러면 실제로 통신하기 위해 클러스터 밖으로 나갔다 오지 않는다.)

 

또 한가지 설정은 Deployment에 볼륨을 마운트 하는 부분이다. 실제 쿠버네티스에서 ConfigMap은 볼륨으로 잡히기 때문에 그 ConfigMap을 logstash pod 내부로 마운트하여 실행시점에 해당 설정파일을 물고 올라가도록 하였다.

 

> kubectl apply -f ./kube-logging/fluentd-elasticsearch/logstash.yaml
> kubectl get pod,svc -n elk-stack | grep logstash
  NAME                                       READY   STATUS    RESTARTS   AGE  
  pod/logstash-deployment-556cfb66b5-6xrs6   1/1     Running   0          34s
  service/logstash-service   ClusterIP   10.96.13.170   <none>        5044/TCP         33s

 

<fluentd 실행>

이제는 실제 컨테이너 로그를 tail하여 수집하는 fluentd를 실행시켜보자.

 

apiVersion: apps/v1
kind: DaemonSet
metadata:
  name: fluentd
  namespace: kube-system
  labels:
    app: fluentd-logging
    version: v1
    kubernetes.io/cluster-service: "true"
spec:
  selector:
    matchLabels:
      app: fluentd-logging
  template:
    metadata:
      labels:
        app: fluentd-logging
        version: v1
        kubernetes.io/cluster-service: "true"
    spec:
      tolerations:
        - key: node-role.kubernetes.io/master
          effect: NoSchedule
      containers:
        - name: fluentd
          image: 1223yys/fluentd-kafka:latest
          imagePullPolicy: Always
          env:
            - name: FLUENT_KAFKA_BROKERS
              value: "my-kafka.kafka.svc.cluster.local:9092"
            - name: FLUENT_KAFKA_DEFAULT_TOPIC
              value: "fluentd-container-logging"
            - name: FLUENT_KAFKA_OUTPUT_DATA_TYPE
              value: "json"
            - name: FLUENT_KAFKA_COMPRESSION_CODEC
              value: "snappy"
            - name: FLUENT_KAFKA_MAX_SEND_LIMIT_BYTES
              value: "4096"
          resources:
            limits:
              memory: 200Mi
            requests:
              cpu: 100m
              memory: 200Mi
          volumeMounts:
            - name: varlog
              mountPath: /var/log
            - name: varlibdockercontainers
              mountPath: /var/lib/docker/containers
              readOnly: true
      terminationGracePeriodSeconds: 30
      volumes:
        - name: varlog
          hostPath:
            path: /var/log
        - name: varlibdockercontainers
          hostPath:
            path: /var/lib/docker/containers

 

fluentd 설정파일은 몇가지 짚고 넘어갈 것들이 있다. 첫번째는 컨테이너를 tail하기 위해 마운트한 설정이다. /var/log, /var/lib/docker/container를 마운트하였다. 실제 호스트머신에 해당 디렉토리에 들어가면 파일이 보이지 않을 것이다. 만약 파일을 보고 싶다면 아래 설정을 통해 도커 컨테이너를 실행시키고 볼 수 있다.

 

> docker run -it --rm -v /var/lib/docker/containers:/json-log alpine ash

 

위 도커이미지를 실행한후 /json-log 디렉토리에 들어가면 호스트머신에 쌓인 컨테이너 로그들을 볼 수 있다.

 

두번째, tail한 로그를 내보내기 위한 env 설정이다. 아웃풋은 카프카로 두었고, 역시 도메인은 내부 클러스터 DNS로 잡아주었다. 그리고, 우리가 미리 생성한 토픽에 데이터를 보내고 있고 타입은 json으로 보내고 있다.(사실상 튜닝할 설정은 많지만 실습의 편의를 위해 대부분 기본 설정으로 잡았다.)

 

그리고 필자가 fluentd 이미지를 새로 빌드한 이유는 카프카로 보내는 로그 포맷을 수정하기 위하여 fluentd 설정파일들을 조금 수정하였기 때문이다. 혹시나 fluentd 설정 파일들이 궁금하다면 포스팅 마지막 Github을 참조하자.(https://github.com/yoonyeoseong/kubernetes-sample/tree/master/kube-logging/fluentd-kafka)

 

> kubectl apply -f ./kube-logging/fluentd-kafka/fluentd-kafka-daemonset.yaml
> kubectl get pod,daemonset -n kube-system | grep fluentd
  NAME                                         READY   STATUS    RESTARTS   AGE
  pod/fluentd-bqmnl                            1/1     Running   0          34s
  daemonset.extensions/fluentd      1         1         1       1            1           <none>                        34s

 

이제 로그 출력을 위해 샘플 앱을 실행시켜보자. 로그 출력을 위한 앱은 꼭 아래 필자가 빌드한 웹 어플리케이션을 실행시킬 필요는 없다. 만약 아래 애플리케이션을 실행시키려면 ingress 설정 혹은 service node port를 설정하자.

 

> kubectl apply -f ./kube-resource/deployment-sample.yaml
> kubectl get pod
  NAME                                 READY   STATUS    RESTARTS   AGE
  sample-deployment-5fbf569554-4pzrf   0/1     Running   0          17s

 

이제 요청을 보내보자.

 

> kubectl get svc -n ingress-nginx
  NAME                                 TYPE        CLUSTER-IP     EXTERNAL-IP   PORT(S)                      AGE
  ingress-nginx-controller             NodePort    10.97.27.106   <none>        80:30431/TCP,443:31327/TCP   21d
  ingress-nginx-controller-admission   ClusterIP   10.96.76.113   <none>        443/TCP                      21d
> curl localhost:30431/api

 

이제 키바나에 접속해보면 앱에서 출력하고 있는 로그 데이터를 볼 수 있다. 모든 예제 설정 및 코드는 아래 깃헙을 참고하자 !

 

 

yoonyeoseong/kubernetes-sample

Kubernetes(쿠버네티스) sample. Contribute to yoonyeoseong/kubernetes-sample development by creating an account on GitHub.

github.com

 

posted by 여성게
:
인프라/Web Server & WAS 2020. 8. 22. 15:43

오늘 포스팅해볼 내용은 Web server 중 하나인 Nginx의 설치 및 사용방법에 대해 다루어본다. 우선 Nginx는 무엇인가 알아보자.

 

예제 설정은 아래 깃헙사이트에 있다.

 

yoonyeoseong/kubernetes-sample

Kubernetes(쿠버네티스) sample. Contribute to yoonyeoseong/kubernetes-sample development by creating an account on GitHub.

github.com

 

Wiki(https://ko.wikipedia.org/wiki/Nginx)
Nginx(엔진 x라 읽는다)는 웹 서버 소프트웨어로, 가벼움과 높은 성능을 목표로 한다. 웹 서버, 리버스 프록시 및 메일 프록시 기능을 가진다.
2017년 10월 기준으로 실질적으로 작동하는 웹 사이트(active site)들에서 쓰이는 웹 서버 소프트웨어 순위는 아파치(44.89%), 엔진엑스(20.65%), 구글 웹 서버(7.86%), 마이크로소프트 IIS(7.32%)순이다.[1] 이 조사에서 생성은 되어있으나 정상적으로 작동하지 않는 웹 사이트들은 배제되었으며[2] 특히 MS의 인터넷 정보 서비스(IIS)를 설치한 웹 사이트들의 상당수가 비활성 사이트였다. 그런 사이트들도 포함하면 MS IIS가 1위이다. 2017년 6월 현재 Nginx는 한국 전체 등록 도메인 중 24.73%가 사용하고 있다.[3]
Nginx는 요청에 응답하기 위해 비동기 이벤트 기반 구조를 가진다. 이것은 아파치 HTTP 서버의 스레드/프로세스 기반 구조를 가지는 것과는 대조적이다. 이러한 구조는 서버에 많은 부하가 생길 경우의 성능을 예측하기 쉽게 해준다.

 

또한 nginx는 하나의 마스터 프로세스와 여러 워커 프로세스가 있고, 마스터 프로세스는 주로 설정 파일을 읽고 적용하며 워커 프로세스들을 관리하는 역할을 하게 된다. 워커 프로세스는 실제 요청에 대한 처리를 하게 된다. nginx는 event driven 모델을 메커니즘으로 사용하여 실제 워커 프로세스간 요청을 효율적으로 분산한다.

 

실습은 Mac os 기준으로 실습을 진행해 볼것이다. 우선 nginx를 설치해보자.

 

Nginx install
> brew install nginx

 

brew로 설치를 아래와 같은 디렉터리들이 생성된다. 우선 아래 디렉토리를 실습을 진행하면서 전부 알아볼 것이다.

 

Docroot is: /usr/local/var/www

The default port has been set in /usr/local/etc/nginx/nginx.conf to 8080 so that
nginx can run without sudo.

nginx will load all files in /usr/local/etc/nginx/servers/.

To have launchd start nginx now and restart at login:
  brew services start nginx
Or, if you don't want/need a background service you can just run:
  nginx
==> Summary
🍺  /usr/local/Cellar/nginx/1.19.2: 25 files, 2.1MB
==> Caveats
==> nginx
Docroot is: /usr/local/var/www

The default port has been set in /usr/local/etc/nginx/nginx.conf to 8080 so that
nginx can run without sudo.

nginx will load all files in /usr/local/etc/nginx/servers/.

To have launchd start nginx now and restart at login:
  brew services start nginx
Or, if you don't want/need a background service you can just run:
  nginx

 

Nginx 구동 명령어(nginx -s <signal>
  • nginx : 서버시작
  • nginx -s stop : 서버종료(워커들이 요청을 처리중이더라도 그냥 종료한다.)
  • nginx -s quit : 워커 프로세스가 현재 요청 처리를 완료할 때까지 대기하고 모두 처리완료된 후에 서버 종료.
  • nginx -s reload : nginx config를 새로 로드한다. 마스터 프로세스가 설정을 다시 로드하라는 요청을 받으면 설정 유효성 검사후 새로운 워커 프로세스를 시작하고, 이전 워커 프로세스에게 종료 메시지를 보내게 되고 이전 워커 프로세스는 요청을 완료하게 되면 종료된다.

위 명령어로 nginx를 시작 해보자 !

 

> nginx
> lsof -i:8080
COMMAND   PID         USER   FD   TYPE             DEVICE SIZE/OFF NODE NAME
nginx   88891 yun-yeoseong    6u  IPv4 0x7370b7ed168f296f      0t0  TCP *:http-alt (LISTEN)
nginx   88892 yun-yeoseong    6u  IPv4 0x7370b7ed168f296f      0t0  TCP *:http-alt (LISTEN)
#실행중인 모든 nginx 프로세스 목록을 가져온다.
> ps -ax | grep nginx
88891 ??         0:00.00 nginx: master process nginx
88892 ??         0:00.01 nginx: worker process
89201 ttys000    0:00.03 vi nginx.conf
89695 ttys001    0:00.00 grep --color=auto --exclude-dir=.bzr --exclude-dir=CVS --exclude-dir=.git --exclude-dir=.hg --exclude-dir=.svn nginx

 

디폴트 포트인 8080으로 nginx 프로세스가 잘 떠있다. 이제 웹브라우저에서 localhost:8080으로 접속해보자.

 

> curl localhost:8080
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
    body {
        width: 35em;
        margin: 0 auto;
        font-family: Tahoma, Verdana, Arial, sans-serif;
    }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
<a href="http://nginx.org/">nginx.org</a>.<br/>
Commercial support is available at
<a href="http://nginx.com/">nginx.com</a>.</p>

<p><em>Thank you for using nginx.</em></p>
</body>
</html>

 

 

브라우저에 welcome to nginx가 보인다면 설치 및 실행이 잘된 것이다 ! 어 그렇다면, 여기서 조금 의아한 것이 있을 것이다. 과연 저 html은 어디서 응답을 준것일까?

 

Docroot

답은 도큐먼트 루트에 있다. 설치를 하면 아래와 같은 로그가 출력되어있을 것인데, 해당 디렉토리 내에 html 파일이 존재한다.

 

Docroot is: /usr/local/var/www

 

기본적으로 웹서버는 다른 서버로 프록시 하지 않는 이상 uri로 명시한 path로 도큐먼트 루트 디렉토리를 찾아서 응답을 주게 된다. 사실 localhost:8080은 localhost:8080/index.html과 같다고 보면된다. 그렇다면 index.html의 위치를 바꾸면 어떻게 될까?

 

> cd /usr/local/var/www
> mkdir backup
> mv index.html ./backup

 

이제 아래 요청을 보내보자.

 

> curl localhost:8080/index.html
<html>
<head><title>404 Not Found</title></head>
<body>
<center><h1>404 Not Found</h1></center>
<hr><center>nginx/1.19.2</center>
</body>
</html>

 

우리는 index.html을 다른 디렉토리로 옮겼기 때문에 404 not found가 뜨게 된다. 그렇다면 옮긴 디렉토리 path를 명시해서 요청을 보내보자.

 

> curl http://localhost:8080/backup/index.html
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
    body {
        width: 35em;
        margin: 0 auto;
        font-family: Tahoma, Verdana, Arial, sans-serif;
    }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
<a href="http://nginx.org/">nginx.org</a>.<br/>
Commercial support is available at
<a href="http://nginx.com/">nginx.com</a>.</p>

<p><em>Thank you for using nginx.</em></p>
</body>
</html>

 

응답이 잘 도착하였다. 보통 도큐멘트 루트는 어떻게 사용이 될까? 보통은 정적인 리소스 파일(css, html)을 위치시키게 된다. 그렇다면 정적인 리로스 파일을 위치시키는 이유는 무엇일까? 만약 WAS에 해당 정적인 리소스 파일을 위치시키게 되면, 사실상 서버 동작과 관련이 적은 정적 리소스를 가져오기 위한 요청도 모두 WAS로 들어가기 때문에 앱에 부하가 많이 가게 될수 있다. 그렇기 때문에 보통 정적인 리소스는 nginx(웹서버)에서 처리하고 WAS는 백엔드 데이터만 제공하게 하여 WAS의 부담을 줄여줄 수 있다.

 

이제는 본격적으로 Nginx의 설정을 커스터마이징해보자.

 

Configuration file's structure

nginx의 설정 파일은 simple directives(단순 지시문)과 block directives(블록 지시문)으로 나뉜다. 단순 지시문을 공백으로 구분 된 이름과 매개변수로 구성되며 세미콜론(;)으로 끝난다. 블록 지시문은 단순 지시문과 구조가 동일하지만 세미콜론 대신 중괄호({})로 명령 블록을 지정한다. 또한 블록지시문을 블록지시문의 중첩구조로도 이루어 질 수 있다. 이러한 지시문으로 nginx에 플러그인 된 여러 모듈을 제어하게 된다.

 

Nginx Configuration

nginx.conf 파일에는 nginx의 설정 내용이 들어간다. 해당 파일의 전체적인 구조(모듈)는 아래와 같이 이루어져있다.

 

user  nginx;
worker_processes  1;

error_log  logs/error.log;

events {
    worker_connections  1024;
}
http { 
    include       mime.types;
    #응답의 기본 default mime type을 지정
    default_type  application/octet-stream;
    
    charset utf-8;
    
    log_format  main  '$remote_addr - $remote_user [$time_local] "$request" '
    '$status $body_bytes_sent "$http_referer" '
    '"$http_user_agent" "$http_x_forwarded_for"';
    
    access_log  /var/log/nginx/access.log  main;
    
	#지정된 에러 코드에 대해 응답나갈 document root의 html 파일을 지정
    #docroot의 html말고 다른 URL로 리다이렉션 가능하다.
    error_page 500 502 503 504 /50x.html;
    #error_page 500 502 503 504 http://example.com/error.html
    
    sendfile        on;
    tcp_nopush     on;
    
    keepalive_timeout  65;
    #keepalive로 유지되는 커넥션으로 최대 처리할 요청수를 지정
    #keepalive_requests 100;    
    
    #nginx의 버전을 숨길 것인가에 대한 옵션이다. 보안상 활성화하는 것을 권장한다.
    server_tokens            on;
    #응답 컨텐츠를 압축하는 옵션, 해당 옵션말고 gzip관련 다양한 옵션 존재(압축 사이즈 등등)
    gzip  on;
    
    #context : http, server, location
    #클라이언트 요청 본문을 읽기 위한 버퍼 크기를 설정 64bit platform default 16k
    client_body_buffer_size 16k;
    #클라이언트 요청 본문을 읽기 위한 타임아웃 시간 설정
    client_body_timeout 60s;
    #클라이언트 요청 헤더를 읽기위한 버퍼 크기 설정
    client_header_buffer_size 1k;
    client_header_timeout 60s;
    #클라이언트가 보낸 요청 본문의 최대 사이즈
    client_max_body_size 1m;
    
    server {
        listen       80;
        location / {
            root   html;
            index  index.html index.htm;
        }
    }
}

 

  • Core 모듈 설정 : 위 예제의 worker_processes와 같은 지시자 설정 파일 최상단에 위치하면서 nginx의 기본적인 동작 방식을 정의한다.
  • http 모듈 블록 : 밑에서 설명할 server, location의 루트 블록이라고 할 수 있고, 여기서 설정된 값을 하위 블록들은 상속한다. http 블록은 여러개를 사용할 수 있지만 관리상의 이슈로 한번만 정의하는 것을 권장한다. http, server, location 블록은 계층구조를 가지고 있고 많은 지시어가 각각의 블록에서 동시에 사용될 수 있는데,  http의 내용은 server의 기본값이 되고, server의 지시어는 location의 기본값이 된다. 그리고 하위의 블록에서 선언된 지시어는 상위의 선언을 무시하고 적용된다.
  • server 블록 : server 블록은 하나의 웹사이트를 선언하는데 사용된다. 가상 호스팅(vhost)의 개념이다.
  • location 블록 : location 블록은 server 블록 안에 정의하며 특정 URL을 처리하는 방법을 정의한다. 예를 들어 uri path마다 다르게 요청을 처리하고 싶을 때 해당 블록 내에 정의한다.
  • events 블록 : nginx는 event driven을 메커니즘으로 동작하는데, 이 event driven 동작 방식에 대한 설정을 다룬다.

 

nginx.conf

"user"

user의 값이 root로 되어 있다면 일반 계정으로 변경하는 것이 좋다. nginx는 마스터 프로세스와 워커 프로세스로 동작하고, 워커 프로세스가 실질적인 웹서버의 역할을 수행하는데 user 지시어는 워커프로세스의 권한을 지정한다. 만약 user의 값이 root로 되어 있다면 워커 프로세스를 root의 권한으로 동작하게 되고, 워커 프로세스를 악의적으로 사용자가 제어하게 된다면 해당 머신을 루트 사용자의 권한으로 원격제어하게 되는 셈이기 때문에 보안상 위험하다.

 

user 설정의 값으로는 대표성있는 이름(nginx)로 사용하고, 이 계정은 일반 유저의 권한으로 쉘에 접속할 수 없어야 안전하다.

 

> useradd --shell /sbin/nologin www-data

 

"worker_process"

worker_process는 워커 프로세스를 몇개 생성할 것인지를 지정하는 지시어이다. 이 값이 1이라면 모든 요청을 하나의 프로세스로 실행하겠다는 뜻인데, 여러개의 CPU 코어가 있는 시스템이라면 CPU 코어수만큼 지정하길 권장한다.

 

"events.worker_connections"

이 값은 몇개의 접속을 동시에 처리할 것인가를 지정하는 값이다. 이 값과 worker_process의 값을 조합해 동시에 최대로 처리할 수 있는 커넥션의 양을 산출할 수 있다.(worker_process*worker_connections)

 

"http.incloud"

가상 호스트 설정이나, 반복되는 설정들을 파일로 저장해놓고, incloude를 통해 불러올 수 있다.

 

"http.log_format"

access 로그에 남길 로그 포맷을 지정한다. 보통 어떠한 장애가 났을 때, 가장 먼저보는 것이 로그 파일이기 때문에 디버깅하기 위해 유용한 값들을 로그에 남겨두는 것이 중요하다. 특히나, 여러 프록시 서버를 지나오는 서버 구성인 경우에는 x-forwarded-ip 등을 지정하면 지나온 프록시들의 아이피들을 할 수 있다.

 

"http.access_log"

access로그를 어느 디렉토리에 남길지 설정한다.

 

"http.keepalive_timeout"

소켓을 끊지 않고 얼마나 유지할지에 대한 설정이다. 자세한 내용은 keepalive 개념을 확인하자.

 

"http.server_tokens"

nginx의 버전을 숨길 것인가에 대한 옵션이다. 보안상 활성화하는 것을 권장한다.

 

기타 설정들은 위 예제 파일에 주석으로 달아놓았다.

 

다음은 실제 프록시 설정이 들어가는 server 블록 설정을 다루어 보자.

 

server {
    listen 80;
    server_name levi.local.com;
    access_log  logs/access.log;
    error_log   logs/error.log;
    error_page  500 502 503 504 /50x.html;
    charset     utf-8;
    
    location / {
    	proxy_pass  http://app;
    }
}

upstream app {
	server localhost:8080;
}

 

위 설정은 http 블록 하위로 들어가게 된다. 크게 어려운 설정은 없고, "levi.local.com:80/"으로 요청이 들어오면 upstream(요청받는 서버)으로 요청을 리버스 프록시 한다라는 뜻이다. 실제로 앱하나를 띄워보고 프록시 되는지 확인해보자. 

 

> curl levi.local.com/api
new api ! - 7

 

위처럼 응답이 잘오는 것을 볼 수 있다. 그런데 사실 server 블록이 하나일때는 server_name에 적혀있는 도메인으로 오지않아도 응답을 준다. server_name이 진짜 도메인네임을 구분하기 위한 server_name으로 사용되기 위해서는 listen 포트가 같은 server 블록이 두개 이상 존재할때 이다. 아래 예제를 보자.

 

    server {
        listen 80;
        server_name levi.local.com;
        #access_log  logs/access.log;
        #error_log   logs/error.log;
        error_page  500 502 503 504 /50x.html;
        charset     utf-8;

        location / {
            proxy_pass  http://app;
        }
    }

    upstream app {
        server localhost:8080;
    }

    server {
        listen 80;
        server_name local.yoon.com;
        #access_log  logs/access.log;
        #error_log   logs/error.log;
        error_page  500 502 503 504 /50x.html;
        charset     utf-8;

        location / {
            proxy_pass  http://app2;
        }
    }

    upstream app2 {
        server localhost:7070;
    }

 

위와 같이 설정하고, 각 도메인을 분리해서 요청을 보내보자. server_name으로 분리되어 요청이 프록시 될것이다.

 

Nginx cache

마지막으로 location 블록에 대한 설정중 nginx cache에 설정에 대해 주로 다루어보자.

 

 

  • /path/to/cache ==> 캐시 내용이 local disk 에 저장될 위치
  • levels=1:2 ==> directory depth 와 사용할 name 길이.
    • ex ) /data/nginx/cache/c/29/b7f54b2df7773722d382f4809d65029c
  • keys_zone ==> 캐시 키로 사용될 이름과 크기. 1MB 는 약 8천개의 이름 저장. 10MB면 8만개.
  • max_size ==> 캐시 파일 크기의 maximum. size 가 over 되면 가장 오래전에 사용한 데이터 부터 삭제한다.
  • inactive ==> access 되지 않았을 경우 얼마 뒤에 삭제 할 것인가.
  • use_temp_path ==> 설정된 path 외에 임시 저장 폴더를 따로 사용할 것인가? 따로 설정하지 않는 것이 좋다.
  • proxy_cache <namev> ==> 캐시로 사용할 메모리 zone 이름.
  • proxy_cache_methods ==> request method를 정의한다. default : GET, HEAD
  • proxy_cache_key ==> 캐시 할 때 사용할 이름.
  • proxy_cache_bypass ==> 예를 들어 "http://www.example.com/?nocache=true" 이러한 요청이 왔을 때 캐싱되지 않은 response 를 보낸다. 이 설정이 없다면 nocache 아규먼트는 동작하지 않는다. http_pragma==> 헤더 Pragma:no-cache
  • proxy_cache_lock ==> 활성화 시키면 한 번에 단 하나의 요청만 proxy server로 전달되어 proxy_cache_key 에 따라 캐싱된 데이터로 사용합니다. 다른 request 들은 캐싱된 데이터를 사용하거나 proxy_cache_lock_timeout의 설정에 따라 proxy server로 전달 될 수 있습니다.
  • proxy_cache_valid ==> 기본적으로 캐싱할 response code 와 시간을 정의한다.

 

 

예제 설정으로는 아래와 같다.

 

proxy_cache_path /usr/local/etc/nginx/cache levels=1:2 keys_zone=myapp:10m max_size=10g inactive=60s use_temp_path=off;

server {
    listen 80;
    server_name levi.local.com;
    access_log  logs/access.log;
    error_log   logs/error.log;
    error_page  500 502 503 504 /50x.html;
    charset     utf-8;
    
    location / {
        proxy_cache myapp;
        proxy_cache_methods GET;
        proxy_cache_key "$uri$is_args$args";
        proxy_cache_bypass $cookie_nocache $arg_nocache $http_pragma;
        proxy_ignore_headers Expires Cache-Control Set-Cookie;
        #proxy_cache_lock on;
        #200ok인 응답을 1분동안 캐싱
        proxy_cache_valid 200 1m; 
        
        proxy_pass  http://app;
    }
}

upstream app {
	server localhost:8080;
}

 

실제로 캐싱이 잘되는지 요청을 보내보고 실제 캐싱이 저장되는 디렉토리로 들어가보자.

 

> cd /usr/local/etc/nginx/cache
> ls
8
> cd 8
> ls
68
> cd 68
> ls
5d198634e5fa00f3cf3a478fcdf57688
> vi 5d198634e5fa00f3cf3a478fcdf57688
^E^@^@^@^@^@^@^@û½@_^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@ÿÿÿÿÿÿÿÿ¿½@_^@^@^@^@#Y|^V^@^@d^Aè^A^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@
KEY: /api?arg=args
HTTP/1.1 200 ^M
Content-Type: text/html;charset=UTF-8^M
Content-Length: 13^M
Date: Sat, 22 Aug 2020 06:39:59 GMT^M
Connection: close^M
^M
new api ! - 5

 

응답이 잘 캐싱된것을 볼수 있다. 그리고 대략 1분후에는 해당 캐싱 파일 지워져있다.

 

여기까지 간단하게 Nginx 설치 및 사용방법에 대해 다루어보았다. 맘 같아선 캐싱에 대해 더 자세히 다루고 싶었다. 대규모 웹사이트 같은 경우는 정말 장비를 늘리는 것으로는 트래픽을 받는데 한계가 있기 때문에 사실상 캐싱 싸움이 될것이기 때문이다. 이번 포스팅에서는 Nginx에 대해 맛보기 정도만 하였지만, 다음 시간에는 조금더 딥한 내용까지 다루어 볼 계획이다.

 

참조

 

nginx cache

1. cache dir 설정 proxy_cache_path /var/cache/nginx levels=1:2 keys_zone=cache:2m 2. cache 사용 설정 server { listen  80; server_name cached.test.co.kr; access_log /var/log/nginx/cache-access.log c..

semode.tistory.com

 

posted by 여성게
:
인프라/운영체제 2020. 8. 22. 00:23

 

 

UNIX/LINUX : 용량 확인 명령어 (df/du)

unix/linux Unix/Linux 디스크 용량 확인 (df/du) 디스크 용량을 확인하는 명령어들이다. df : 디스크의 남은 용량을 확인 df -k : 킬로바이트 단위로 현재 남은 용량을 확인 df -m : 메가바이트 단위로 남은 �

ra2kstar.tistory.com

 

디스크의 남은 용량 확인
  • df -k : 킬로바이트 단위로 현재 남은 용량을 확인
  • df -m : 메가바이트 단위로 남은 용량을 왁인 
  • df -h : 보기 좋게 보여줌
  • df . : 현재 디렉토리가 포함된 파티션의 남은 용량을 확인
> df -h
Filesystem      Size   Used  Avail Capacity iused      ifree %iused  Mounted on
/dev/disk1s1   466Gi   10Gi  379Gi     3%  487648 4881965192    0%   /
devfs          190Ki  190Ki    0Bi   100%     659          0  100%   /dev
/dev/disk1s2   466Gi   73Gi  379Gi    17% 1142296 4881310544    0%   /System/Volumes/Data
/dev/disk1s5   466Gi  2.0Gi  379Gi     1%       2 4882452838    0%   /private/var/vm
map auto_home    0Bi    0Bi    0Bi   100%       0          0  100%   /System/Volumes/Data/home

 

현재 디렉토리의 용량 확인
  • du -a : 현재 디렉토리의 사용량을 파일단위 출력
  • du -s : 총 사용량을 확인
  • du -h : 보기 좋게 바꿔줌 
  • du -sh * : 한단계 서브디렉토리 기준으로 보여준다. 
> du -sh *
4.0K	Dockerfile
4.0K	HELP.md
 12K	README.md
 34M	build
4.0K	build.gradle
 60K	gradle
8.0K	gradlew
4.0K	gradlew.bat
284K	kube-logging
 48K	kube-resource
4.0K	kube-sample.iml
 24K	nginx
4.0K	settings.gradle
4.0K	src

 

posted by 여성게
:
인프라/Docker&Kubernetes 2020. 8. 15. 22:31

 

오늘은 쿠버네티스의 볼륨에 대해 다루어 볼 것이다. 간단하게 몇가지 볼륨 플러그인에 대해 예제를 다루어보고, 퍼시스턴트 볼륨&볼륨 클레임에 대해 다루어본다.

 

 

yoonyeoseong/kubernetes-sample

Contribute to yoonyeoseong/kubernetes-sample development by creating an account on GitHub.

github.com

 

emptyDir

해당 플러그인은 pod가 실행되는 호스트의 디스크를 임시로 컨테이너에 볼륨으로 할당해서 사용하는 방법이다. pod가 사라지면 emptyDir에 마운트해서 사용하는 데이터도 모두 사라진다. 하지만, pod이 종료되지 않고 단순히 container만 재시작된 것이라면 데이터는 유지된다. 주로 대용량 데이터 계산의 중간 연산 저장 용도로 사용한다.

 

apiVersion: v1
kind: Pod
metadata:
  name: springboot-web
spec:
  containers:
  - name: springboot-web
    image: 1223yys/springboot-web:0.1.6
    ports:
    - containerPort: 8080
    volumeMounts:
      - mountPath: /emptyDir
        name: emptyDir_vol
  volumes:
    - name: emptyDir_vol
      emptyDir: {}

 

hostPath

pod가 실행된 호스트의 파일이나 디렉터리를 pod에 마운트한다. emptyDir가 임시 디렉터리를 마운트하는 것이라면, hostPath는 호스트에 있는 실제 파일이나 디렉터리를 마운트하는 것이며 pod를 재시작하더라도 데이터가 보존된다. 보통은 /var/lib/docker 같은 도커 시스템용 디렉토리를 컨테이너에 마운트해 시스템 모니터링 등을 진행할 때 사용하기도 한다.

 

apiVersion: v1
kind: Pod
metadata:
  name: springboot-web
spec:
  containers:
  - name: springboot-web
    image: 1223yys/springboot-web:0.1.6
    ports:
    - containerPort: 8080
    volumeMounts:
      - mountPath: /test-volume
        name: hostPath-vol
  volumes:
    - name: hostPath-vol
      hostPath:
        path: /tmp
        type: Directory

 

실제로 볼륨이 잘 마운트 되었는지 확인해보자.

 

> kubectl exec <pod-name> -it sh
> cd /test-volume
> touch test.txt
> exit
> ls /tmp

 

호스트의 /tmp 디렉토리에 test.txt가 생성되었다면, 볼륨이 잘 마운트 된 것이다. hostPath 볼륨에는 아래와 같이 여러가지 타입이 존재한다.

 

  • null: hostPath 볼륨을 마운트하기 전에 아무것도 확인하지 않는다.
  • DirectoryOrCreate: 설정한 경로에 디렉터리가 없으면 퍼미션이 755인 빈 디렉터리를 만든다.
  • Directory: 설정한 경로에 디렉터리가 존재해야한다. 호스트에 해당 디렉터리가 없으면 파드는 ContainerCreating 상태로 남고 생성이 안된다.
  • FileOrCreate: 설정한 경로에 파일이 없으면 퍼미션이 644인 빈 파일을 만든다.
  • File: Directory와 동일
  • Socket: 설정한 경로에 유닉스 소켓 파일이 있어야한다.

 

퍼시스턴트 볼륨&볼륨 클레임(Persistent Volume, Persistent Volume Claim)

쿠버네티스에서 볼륨을 사용하는 구조는 PV와 PVC로 분리되어있다. PV는 볼륨 자체를 뜻하고 클러스터 안에서 자원으로 다룬다. 파드하고는 별개로 관리되고 별도의 생명주기가 있다.

 

 

PVC는 사용자가 PV에 하는 요청이다. 사용하고 싶은 용량은 얼마인지, 읽기/쓰기는 어떤 모드를 사용하고 싶은지 등을 정하여 요청한다. 즉, 쿠버네티스는 이처럼 파드에 볼륨을 직접 할당하는 형태가 아니라, 중간에 PVC를 두어 파드와 파드가 사용할 스토리지를 분리하는 전략인 것이다. 이렇게 분리됨으로써 이점은 다양한 스토리지를 PV로 사용할 수 있는데, 파드는 어떠한 스토리지의 볼륨인지 신경쓸 필요없이 PVC으로 요청만 하면 되기 때문에 의존성이 줄어들게 되고, manifest도 분리됨으로써 설정파일 자체의 복잡함이 사라진다.

 

PV&PVC 생명주기
  • Provisioning: PV를 만드는 단계를 뜻한다.
    • static provisioning: 미리 PV를 만들어 두고 사용자의 요청이 있으면 미리 만들어둔 PV를 할당한다.(보통 스토리지 용량의 제한이 있을때 사용한다.)
    • dynamic provisioning: 사용자가 PVC를 거쳐 PV를 요청했을 때, PV를 생성해 제공한다.
  • Binding: 바인딩은 프로비저닝으로 만든 PV를 PVC와 연결하는 단계이다. PVC에서 원하는 스토리지의 용량과 접근 방법을 명시해서 요쳥하면 맞는 PV가 할당된다. 이때 PVC에서 원하는 PV가 없다면 요청은 실패하고, PVC에서 원하는 PV가 생길 때까지 대기하다가 PVC에 바인딩된다.(PVC 하나에 여러 PV가 매핑될 수 없다.)
  • Using: PVC는 파드에 설정되고 파드는 PVC를 볼륨으로 인식해서 사용한다. 할당된 PVC는 파드를 유지하는 동안 계속 사용하며 시스템에서 임의로 삭제할 수 없다. 이 기능을 "Storage Object In Use Protection"이라 한다.
  • Reclaiming: 사용이 끝난 PVC는 삭제되고 PVC를 사용하던 PV를 초기화하는 과정을 뜻한다. 초기화 정책으로는 아래와 같다.
    • Retain: PV를 그대로 보존한다. PVC가 삭제되면 사용 중이던 PV는 해제(released)상태라서 아직 다른 PVC가 재사용할 수 없다.(데이터는 아직 그대로 보존되어있다.) 만약 해당 PV를 재사용하려면 아래와 같은 순서로 직접 초기화해줘야한다.
      1. PV삭제. 만약 PV가 외부 스토리지와 연결되어있다면 PV는 삭제되더라도 외부 스토리지의 볼륨은 그대로 남아있다.
      2. 외부 스토리지에 남은 데이터를 직접 정리한다.
      3. 남은 스토리지의 볼륨을 삭제하거나 재사용하려면 해당 볼륨을 이용하는 PV를 다시 만든다.
    • Delete: PV를 삭제하고 연결된 외부 스토리지 쪽의 볼륨도 삭제한다. 동적 프로비저닝은 기본적으로 해당 정책을 따른다.
    • Recycle: PV의 데이터들을 삭제하고 다시 새로운 PVC에서 PV를 사용할 수 있도록한다.

 

이제 실제로 실습을 통해 알아보자. 다음은 퍼시스턴트 볼륨 템플릿이다.

 

apiVersion: v1
kind: PersistentVolume
metadata:
  name: persistent-volume
  namespace: levi-volume
spec:
  capacity:
    storage: 1Gi
  volumeMode: Filesystem
  accessModes:
    - ReadWriteOnce
  storageClassName: manual
  persistentVolumeReclaimPolicy: Delete
  hostPath:
    path: /tmp

 

간단하게 설정파일에 작성된 설정을 설명하면 아래와 같다.

 

  • accessModes
    • ReadWriteOne: 노드 하나에만 볼륨을 읽기/쓰기하도록 마운트한다.
    • ReadOnlyMany: 여러 개 노드의 읽기 전용으로 마운트한다.
    • ReadWriteMany: 여러 개 노드에서 읽기/쓰기를 허용하도록 마운트한다.
  • storageClassName: 스토리지 클래스를 설정하는 필드이고, PVC가 특정 스토리지 클래스를 명시하여 요청하면 해당 스토리지 클래스로 선언된 PV와 연결된다. 만약 스토리지 클래스를 설정하지 않았다면, 특정 스토리지 클래스를 명시하지 않은 PVC가 요청하면 매핑된다.
  • persistentVolumeReclaimPolicy: PV가 해제되었을 때의 초기화 옵션을 설정한다.(Retain/Recycle/Delete)
  • .spec.hostPath: 해당 PV의 볼륨 플러그인을 명시한다.

 

볼륨이 잘 생성되었는지 확인해보자.

 

> kubectl apply -f ./kube-resource/persistent-volume-sample.yaml
> kubectl get pvc -n levi-volume
NAME                CAPACITY   ACCESS MODES   RECLAIM POLICY   STATUS      CLAIM   STORAGECLASS   REASON   AGE
persistent-volume   1Gi        RWO            Delete           Available           manual       

 

STATUS는 아래와 같이 4가지의 상태값을 갖는다.

 

  • Available: PVC에서 사용할 수 있는 상태
  • Bound: 특정 PVC에 연결된 상태
  • Released: PVC는 삭제되었고, PV는 아직 초기화되지 않은 상태
  • Failed: 자동 초기화를 실패한 상태

 

다음은 퍼시스턴트 볼륨 클레임 설정이다.

 

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: persistent-volume-claim
  namespace: levi-volume-claim
spec:
  volumeMode: Filesystem
  accessModes:
    - ReadWriteOnce
  storageClassName: manual
  resources:
    requests:
      storage: 500Mi

 

다른 내용은 볼륨의 설정과 크게 차이가 없고 한가지만 설명하자면, ".spec.resources.requests.storage"는 자원을 얼마나 사용할 것인지 명시하는 것이며, PV의 용량보다 높다면, 할당되지 않고 Pending 상태가 된다.

 

볼륨 클레임이 잘 생성되었는지 확인해보자.

 

> kubectl apply -f ./kube-resource/persistent-volume-claim-sample.yaml
> kubectl get pvc -n levi-volume-claim
NAME                      STATUS   VOLUME              CAPACITY   ACCESS MODES   STORAGECLASS   AGE
persistent-volume-claim   Bound    persistent-volume   1Gi        RWO            manual         11s
> kubectl get pv -n levi-volume
NAME                CAPACITY   ACCESS MODES   RECLAIM POLICY   STATUS   CLAIM                                       STORAGECLASS   REASON   AGE
persistent-volume   1Gi        RWO            Delete           Bound    levi-volume-claim/persistent-volume-claim   manual                  4h44m

 

PVC와 PV가 binding 된 이후에는 각각 STATUS가 Bound 상태로 변경되었다. 보통 PV와 PVC를 연동할때는 storageClassName을 보고 연결되는데, 또 다른 방법으로는 label로 연결할 수도 있다.

 

#볼륨
apiVersion: v1
kind: PersistentVolume
metadata:
  name: persistent-volume
  namespace: levi-volume
  labels:
    location: local
spec:
  capacity:
    storage: 1Gi
  volumeMode: Filesystem
  accessModes:
    - ReadWriteOnce
  storageClassName: manual
  persistentVolumeReclaimPolicy: Delete
  hostPath:
    path: /tmp

#볼륨 클레임
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: persistent-volume-claim
  namespace: levi-volume-claim
spec:
  volumeMode: Filesystem
  accessModes:
    - ReadWriteOnce
  storageClassName: manual
  resources:
    requests:
      storage: 500Mi
  selector:
    matchLabels:
      location: local

 

마지막으로 pod에 볼륨을 마운트해보자.

 

apiVersion: apps/v1
kind: Deployment
metadata:
  name: sample-deployment
spec:
  replicas: 2
  selector:
    matchLabels:
      app: springboot-web
  template:
    metadata:
      labels:
        app: springboot-web
    spec:
      containers:
        - name: springboot-web
          image: 1223yys/springboot-web:0.2.5
          imagePullPolicy: Always
          ports:
            - containerPort: 8080
          volumeMounts:
            - mountPath: /test-volume
              name: persistent-volume
          livenessProbe:
            httpGet:
              port: 9090
              path: /api
            initialDelaySeconds: 60
          readinessProbe:
            httpGet:
              port: 9090
              path: /api
            initialDelaySeconds: 60
      volumes:
        - name: persistent-volume
          persistentVolumeClaim:
            claimName: persistent-volume-claim

 

만약 예제대로 따라왔다면, pod은 뜨지 못하고 pending된 상태로 머물러 있을 것이다. 왜냐하면 클러스터는 클레임을 사용하는 pod와 동일한 네임스페이스에 있어야하기 때문이다. 위 deployment는 네임스페이스가 default이므로, 볼륨 클레임을 default 네임스페이스에 하나 생성해주어야 한다.

 

여기까지 정말 간단하게 쿠버네티스 볼륨과 볼륨 클레임에 대해 다루어보았다. 사실 다루어볼 볼륨 플러그인이 아주 많기 때문에 다음 포스팅에서 더 자세히 다루어볼 것이다.

posted by 여성게
:
인프라/Docker&Kubernetes 2020. 8. 2. 22:52

 

이번 포스팅에서 다루어볼 내용은 간단하게 쿠버네티스 ingress-nginx를 설치하고, 외부 트래픽을 내부 팟에게 전달해주는 예제이다. 바로 예제로 들어간다.

 

> git clone https://github.com/kubernetes/ingress-nginx.git
> cd ./ingress-nginx/deploy/static/provider/baremetal
> kubectl apply -f .
> kubectl get deploy -n ingress-nginx
NAME                       READY   UP-TO-DATE   AVAILABLE   AGE
ingress-nginx-controller   1/1     1            1           60s

 

여기까지 따라왔다면 설치는 완료되었고, ingress-nginx를 위한 서비스 등이 떴을 것이다.

 

kubectl get svc -n ingress-nginx
NAME                                 TYPE        CLUSTER-IP     EXTERNAL-IP   PORT(S)                      AGE
ingress-nginx-controller             NodePort    10.97.27.106   <none>        80:30431/TCP,443:31327/TCP   4m35s

 

30431로 접속해보자.

 

> curl levi.local.com:30431
<html>
<head><title>404 Not Found</title></head>
<body>
<center><h1>404 Not Found</h1></center>
<hr><center>nginx/1.19.1</center>
</body>
</html>

 

호스트 설정을 통해 levi.local.com을 localhost로 포워딩하도록 설정하였다. 실습에 localhost는 사용하기 힘들기 때문에 etc/hosts 설정을 통해 로컬을 특정 도메인처럼 할당해보자.

 

> sudo vi /etc/hosts
127.0.0.1 levi.local.com

 

이제 ingress-nginx가 포워딩할 웹어플리케이션 팟을 띄워보자.

 

apiVersion: apps/v1
kind: Deployment
metadata:
  name: sample-deployment
spec:
  replicas: 1
  selector:
    matchLabels:
      app: springboot-web
  template:
    metadata:
      labels:
        app: springboot-web
    spec:
      containers:
        - name: springboot-web
          image: 1223yys/springboot-web:0.2.5
          imagePullPolicy: Always
          ports:
            - containerPort: 8080
          livenessProbe:
            httpGet:
              port: 8080
              path: /api
            initialDelaySeconds: 60
          readinessProbe:
            httpGet:
              port: 8080
              path: /api
            initialDelaySeconds: 60

 

디플로이먼트 컨트롤러로 springboot-web 애플리케이션 팟을 관리하도록 매니페스트를 작성하였다. 해당 매니패스트를 적용해보자.

 

> kubectl apply -f deployment.yaml

 

다음으로는 springboot-web으로 접근할 수 있게 해주는 외부 통로인 서비스를 작성해보자.

 

apiVersion: v1
kind: Service
metadata:
  name: springboot-web-service
spec:
  selector:
    app: springboot-web
  ports:
    - name: http
      port: 80
      targetPort: 8080

 

해당 서비스도 배포해보자.

 

> kubectl apply -f service.yaml

 

마지막으로 ingress nginx 매니페스트 파일을 작성해보자.

 

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
  name: nginx-ingress-sample
  annotations:
    nginx.ingress.kubernetes.io/rewrite-target: /
spec:
  rules:
  - host: levi.local.com
    http:
      paths:
      - path: /
        backend:
          serviceName: springboot-web-service
          servicePort: 80

 

위 매니페스트 파일에서 host를 유의하자. 포스팅 초반에 localhost를 로컬 도메인으로 할당해야한다 했는데, 그 이유가 위 host 때문이다. 위에 보이는 host는 실제로 http 요청이 들어올때 요청 헤어의 "Host : levi.local.com" 을 참조하기 때문이다.

 

이제 요청을 보내보자.

 

> curl http://levi.local.com:30431/api
new api !


 ingress-nginx를 통해 웹앱 팟에 잘 접근되는 것을 확인할 수 있다.

posted by 여성게
:
인프라/Docker&Kubernetes 2020. 7. 19. 21:41

 

오늘 간단히 다루어볼 내용은 쿠버네티스 리소스(cpu, memory) 할당과 관리에 대한 이야기이다.  

 

리소스 관리

쿠버네티스에서 Pod를 어느 노드에 배포할지 결정하는 것을 스케쥴링이라고 한다. 팟에 대한 스케쥴링시, 노드에 애플리케이션이 동작할 수 있는 충분한자원(CPU, 메모리 등)이 확보되어야 배포가 가능하다. 이때문에 쿠버네티스 manifast 파일에 아주 중요한 설정이 있는데, 그것은 request, limit 에 대한 설정이다.

 

Request&Limit

 

컨테이너에 적용될 리소스의 양을 정의하는데, request와 limit이라는 설정을 사용한다. request는 컨테이너가 생성될때 최소한 있어야하는 자원 요청이고, limit은 request만큼 할당된 것보다 더 많은 리소스가 필요할때, 해당 컨테이너에게 최대로 줄 수 있는 자원의 양을 뜻한다. 간단히 예를 들어보면, request가 500이고, limit이 1000 이라면, 컨테이너는 처음 시작될때 500을 할당 받고 실행되며, 많은 트래픽이 몰려 리소스가 부족하다면 최대 500만큼의 자원을 더 받을 수 있다.

 

apiVersion: apps/v1
kind: Deployment
metadata:
  name: web-service
spec:
  replicas: 4
  strategy:
    type: RollingUpdate
    rollingUpdate:
      maxSurge: 2 //팟을 시작&종료할때 2개씩 작업한다.
      maxUnavailable: 0 //롤링 업뎃시 모든 팟(4개)이 서비스 가능하도록. 
                          만약 1이면, 리플리카 4개중 1개는 작업불능
  template:
    spec:
      containers:
      - name: web-service
        resources:
          requests:
            cpu: 2000m
            memory: 2Gi
          limits:
            cpu: 4000m
            memory: 4Gi

 

Request&Limit을 지정해야하는 이유는? Overcommitted 상태

이  request와 limit의 개념이 있기 때문에 생기는 문제인데, request 된 양에 따라서 컨테이너를 만들었다고 하더라도, 컨테이너가 운영이되다가 자원이 모자르면 limit 에 정의된 양까지 계속해서 리소스를 요청하게 된다. 컨테이너의 총 Limit의 양이 실제 시스템이 가용한 resource의 양보다 많을 수 있는 경우가 발생한다. 이를 overcommitted 상태라고 한다. Overcommitted 상태가 발생하면, CPU의 경우에는 실제 사용량을 requested 에 정의된 상태까지 낮춘다. 예를 들어 limit이 500, request가 100인 경우, 현재 500으로 가동되고 있는 컨테이너의 CPU할당량을 100으로 낮춘다. 그래도 Overcommitted 상태가 해결되지 않는 경우, 우선 순위에 따라서 운영중인 컨테이너를 강제 종료 시킨다. 메모리의 경우에는 할당되어 사용중인 메모리의 크기를 줄일 수 는 없기 때문에, 우선 순위에 따라서 운영 중인 컨테이너를 강제 종료 시킨다.  Deployment,RS/RC에 의해 관리되고 있는 컨테이너는 다시 리스타트가 되고 초기 requested 상태의 만큼만 자원 (메모리/CPU)를 요청해서 사용하기 때문에, overcommitted  상태가 해제된다.

 

Best practice

구글 문서에 따르면 데이타 베이스등 아주 무거운 애플리케이션이 아니면, 일반적인 경우에는 CPU request를 100m 이하로 사용하기를 권장한다. 또한 세밀하게 클러스터를 운영하기 어려운 경우에는 request와 limit의 사이즈를 같게 하는 것을 권장한다. limit이 request보다 클 경우 overcommitted 상태가 발생할 수 있는데, 이때 CPU가 throttle down 되면, 실제 필요한 CPU양 보다 작은 CPU양으로 줄어들기 때문에 성능저하가 발생할 수 있다.


<참조>

 

쿠버네티스 #21 - 리소스(CPU/Memory) 할당과 관리

쿠버네티스 리소스(CPU/Memory)할당과 관리 조대협 리소스 관리 쿠버네티스에서 Pod를 어느 노드에 배포할지를 결정하는 것을 스케쥴링이라고 한다. Pod에 대한 스케쥴링시에, Pod내의 애플리케이션�

bcho.tistory.com

 

posted by 여성게
: