루씬(17)
-
Elasticsearch - Aggregation API(엘라스틱서치 집계,파이프라인(Pipeline Aggregations) 집계) -3
파이프라인 집계(Pipeline Aggregations)는 다른 집계와 달리 쿼리 조건에 부합하는 문서에 대해 집계를 수행하는 것이 아니라, 다른 집계로 생성된 버킷을 참조해서 집계를 수행한다. 집계 또는 중첩된 집계를 통해 생성된 버킷을 사용해 추가적으로 계산을 수행한다고 보면 된다. 파이프라인 집계에는 부모(Parent), 형제(Sibling)라는 두 가지 유형이 있다. 파이프라인 집계를 수행할 때는 buckets_path 파라미터를 사용해 참조할 집계의 경로를 지정함으로써 체인 형식으로 집계 간의 연산이 이뤄진다. 파이프라인 집계는 모든 집계가 완료된 후에 생성된 버킷을 사용하기 때문에 하위 집계를 가질 수는 없지만 다른 파이프라인 집계와는 buckets_path를 통해 참조하도록 지정할 수 있다...
2019.09.20 -
Elasticsearch - Aggregation API(엘라스틱서치 집계,버킷(Bucket Aggregations) 집계) -2
이번 포스팅은 엘라스틱서치 Aggregation(집계) API 두번째 글이다. 이번 글에서는 집계중 버킷집계(Bucket)에 대해 알아볼 것이다. 우선 버킷 집계는 메트릭 집계와는 다르게 메트릭을 계산하지 않고 버킷을 생성한다. 생성되는 버킷은 쿼리와 함께 수행되어 쿼리 결과에 따른 컨텍스트 내에서 집계가 이뤄진다. 이렇게 집계된 버킷은 또 다시 하위에서 집계를 한번 더 수행해서 집계된 결과에 대해 중첩된 집계 수행이 가능하다. 버킷이 생성되는 것은 집계 결과 집합을 메모리에 저장한다는 것이기 때문에 너무 많은 중첩 집계는 메모리 사용량을 점점 높히기에 성능에 악영향을 줄 수 있다. 이러한 문제때문에 엘라스틱서치는 설정으로 최대 버킷수를 조정할 수 있다. > search.max_buckets 버킷의 크기..
2019.09.20 -
Elasticsearch - Aggregation API(엘라스틱서치 집계,메트릭(Metric Aggregations) 집계) -1
이번에 다루어볼 내용은 엘라스틱서치 Aggregation API이다. 해당 기능은 SQL과 비교하면 Group by의 기능과 아주 유사하다. 즉, 문서 데이터를 그룹화해서 각종 통계 지표 만들어 낼 수 있다. 엘라스틱서치의 집계(Aggregation) 통계 분석을 위한 프로그램은 아주 많다. 하지만 실시간에 가깝게 어떠한 대용량의 데이터를 처리하여 분석 결과를 내놓은 프로그램은 많지 않다. 즉, RDBMS이나 하둡등의 대용량 데이터를 적재하고 배치등을 돌려 분석을 내는 것이 대부분이다. 하지만 엘라스틱서치는 많은 양의 데이터를 조각내어(샤딩)내어 관리하며 그 덕분에 다른 분석 프로그램보다 거의 실시간에 가까운 통계 결과를 만들어낼 수 있다. 하지만 집계기능은 일반 검색 기능보다 훨씬 더 많은 리소스를 소..
2019.09.19 -
Elasticsearch - Rest High Level Client를 이용한 Index Template 생성
오늘 간단히 다루어볼 내용은 엘라스틱서치의 REST 자바 클라이언트인 Rest High Level Client를 이용하여 Index Template을 생성해보는 예제이다. 바로 예제로 들어간다. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 public void indexTemplate() throws IOException { String typeName = "_doc"; if(!existTemplate()) { try(RestHighLevelClient client = createConnection();){ PutIndexTemplateRequest templateRequest ..
2019.06.27 -
Elasticsearch - 엘라스틱서치 노드의 종류 그리고 클러스터링
개발환경 또는 테스트를 진행하기 위해서는 엘라스틱서치의 단일 노드로도 충분하다. 그래서 엘라스틱서치 노드는 기본적으로 싱글 노드에서 모든 역할을 수행할 수 있게 설정하는 것이 가능하다. 하지만 실제 운영환경에서는 대부분 다수의 노드를 클러스터링하여 구성하기 때문에 각각 목적에 맞는 노드를 적절히 설정해 운영하는 것이 유리하다. 엘라스틱서치 노드의 종류 elasticsearch.yml 파일에는 노드 관련 속성이 제공된다. 이 속성들을 적절히 조합해서 특정 모드로 설정하는 것이 가능하다. node.master : 마스터 기능 활성화 여부 node.data : 데이터 기능 활성화 여부 node.ingest : Ingest 기능 활성화 여부 search.remote.connect : 외부 클러스터 접속 가능 여..
2019.06.08 -
Lucene - 인메모리버퍼(In-Memory-Buffer) 역할, 세그먼트 병합(Merge)
루씬은 색인 요청이 올때마다 새로운 세그먼트가 추가된다. 그리고 일정한 주기로 세그먼트들을 병합하는 과정을 갖는다. 만약 이러한 루씬에 인메모리버퍼가 하는 역할은 무엇일까? 우선 인메모리버퍼가 없는 루씬을 가정한다면, 만약 순간적으로 대용량의 데이터의 색인요청이 많아질 경우 세그먼트(역색인 파일)의 개수가 너무 많아져서 문제가 될 수 있다. 파일이 갑자기 많아지고 이는 당연히 색인에 지연이 생길 것이고 최종적으로 서비스 장애로 이어질 것이다. 하지만 실제적으로 루씬은 색인 작업이 요청되면 전달된 데이터는 일단 인메모리버퍼에 순서대로 쌓이고 버퍼가 일정크기 이상의 데이터가 쌓였다면 그때 한번에 모아서 색인처리를 한다. 즉, 버퍼가 일종의 큐역할을 하는 것이다. 버퍼에 모여 한번에 처리된 데이터는 즉시 세그..
2019.05.25